

ECE 344

Microwave Fundamentals

Assistant Professor Dr. Gehan Sami

lect4 Ideal transmission line component in ADS

Example 1

Figure shows an ideal transmission line in the ADS schematic window. The **E** in the figure represents the electrical length

(1) If the wavelength at 1 GHz is denoted as λ_o , what is the length of the transmission line?

(2) What is the electrical length E at a frequency of 3 GHz?

Solutions

(1) Since

$$\theta = \beta l = \frac{2\pi l}{\lambda_o} = \frac{\pi}{2}$$

then the length is found to be $l = 0.25 \lambda_0$. physical length if fabricated=7.5 cm

(2) The electrical length is

$$\theta = \beta l = \frac{\omega l}{v_p} = \frac{2\pi l}{\lambda}$$

Now, keeping the phase velocity and length fixed, the electrical length is proportional to the frequency. Thus, at 3 GHz, $|\mathbf{E}|$ 270°.

Verify by ADS

freq	v1
1.000 GHz	1.000 / -90.000
2.000 GHz	1.000 / -179.999
3.000 GHz	1.000 / 90.000

OpenTLequive Example 2 **Open end and short end TL equivalent elements**

S-PARAMETERS

Zin Zin Zin1

F=1 GHz

Zin1=zin(S11,PortZ1)

Zin2

Zin2=zin(S22,PortZ2)

shortTLequivL			S_Param SP1 Start=1.0 GHz Stop=1.0 GHz Step=1.0 GHz	L L1 Term L=7.96 nH Term1 R=
freq	Zin1	Zin2	· · · · · · · · · ·	Z=50 Ohm
1.000 GHz	50.014 / 90.000	50.000 / 90.000		≢
				Term Term2 TLIN Num=2 Z=50 Ohm E=45

Zin for microwave circuit contain $\lambda/8$ open end TL and its equivalent capacitor (OC TL is shunt connection as its equivalent capacitor), using schematic and smith-chart utility

A 50 Ω line of length $\lambda/2$ is connected at one end to a reflectionless 50 Ω generator. The other end is terminated alternatively with load Z = Z1, or Z = Z2. Determine for the two terminations Z = Z1, Z = Z2. a) The reflection coefficient of the load Γ b) The input impedance on the generator side Z'

Where Z1 = 50Ω ,and Z2 = 30 – j 40 Ω **Solution:** At length $\lambda/2 \tan \beta I=0$ and Zin=ZL

Use smithchart utility to check your answer:

Freq (GHz) Z0 (Ohms) 50 1 Normalize Define Source/Load Network Terminations... Network Schematic For Z2 Set Defaults... Delete Selected Component Zo: Value: 30-j*40 Loss: dB/m Lock Source Impedance Lock Load Impedance 0.50000 < -90.0000 Z: 30.0000 +j -40.0000Gamma: VSWR: 3.00000 Y: 0.01200 0.01600 +j

AT Z1 Γ=0, Zin=Z1 At Z2 Γ= - j0.5 zin=Z2

Given a 50 Ω transmission line that is 0.25 λ long excited by a 1 V voltage source at 300 MHz frequency with an internal impedance of 100 Ω , and the line is terminated by a load $Z_L = 100 - j40 \Omega$, determine $\Gamma_L, Z_{in}, V_{in}, V_o^+$

$$\Gamma_L = \frac{Z_L - Z_o}{Z_L + Z_o} = 0.378 - j0.166$$

$$Z_{in} = Z_o * Z_o / Z_L = 21.55 + j8.62$$

$$V_{in} = V_{TH} \frac{Z_{in}}{Z_{in} + Z_{TH}} = 0.1814 + j0.058$$

$$V_o^+ = \frac{V_{in}}{e^{j\beta l}(1 + \Gamma_L e^{-2j\beta l})} = 0.0144 - j0.295$$

Terminated Transmission Line (cont.)

$$V(z) = V_0^+ e^{-\gamma z} + V_0^- e^{+\gamma z}$$

What if we know

$$V^+$$
 and V^- @ $z = -\ell$

Can we use $z = -\ell$ as a reference plane?

$$V_{0}^{+} = V^{+}(0) = V^{+}(-\ell)e^{-\gamma\ell}$$

Terminating impedance (load)

$$V^{-}\left(-\ell\right) = V^{-}\left(0\right)e^{-\gamma\ell}$$

$$\Rightarrow V_0^- = V^-(0) = V^-(-\ell)e^{\gamma\ell}$$

Hence

$$V(z) = V^{+}(-\ell)e^{-\gamma(z+\ell)} + V^{-}(-\ell)e^{\gamma(z+\ell)}$$

Terminated Transmission Line (cont.)

Compare:

$$V(z) = V^+(0)e^{-\gamma z} + V^-(0)e^{+\gamma z}$$

$$V(z) = V^{+}(-\ell)e^{-\gamma(z-(-\ell))} + V^{-}(-\ell)e^{\gamma(z-(-\ell))}$$

Note: This is simply a change of reference plane, from z = 0 to $z = -\ell$.

Find the voltage at any point on the line.

$$Z_{in} = Z(-d) = Z_0 \left(\frac{Z_L + jZ_0 \tan(\beta d)}{Z_0 + jZ_L \tan(\beta d)} \right)$$

$$\Rightarrow V(-d) = V_{TH} \left(\frac{Z_{in}}{Z_{in} + Z_{TH}} \right)$$

Zin

Note:
$$V(-\ell) = V_0^+ e^{j\beta\ell} \left(1 + \Gamma_L e^{-2j\beta\ell}\right)$$

 $\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0}$

At $\ell = d$:

$$V(-d) = V_0^+ e^{j\beta d} \left(1 + \Gamma_L e^{-j2\beta d}\right) = V_{TH} \left(\frac{Z_{in}}{Z_{in} + Z_{TH}}\right)$$

$$\Rightarrow V_0^+ = V_{TH} \left(\frac{Z_{in}}{Z_{in} + Z_{TH}} \right) e^{-j\beta d} \left(\frac{1}{1 + \Gamma_L e^{-j2\beta d}} \right)$$

Hence

$$V(-\ell) = V_{TH} \left(\frac{Z_{in}}{Z_m + Z_{TH}}\right) e^{-j\beta(d-\ell)} \left(\frac{1 + \Gamma_L e^{-j2\beta\ell}}{1 + \Gamma_L e^{-j2\beta d}}\right)$$

Some algebra: Z

$$Z_{in} = Z\left(-d\right) = Z_0\left(\frac{1+\Gamma_L e^{-j2\beta d}}{1-\Gamma_L e^{-j2\beta d}}\right)$$

$$\Rightarrow \frac{Z_{in}}{Z_{in} + Z_{TH}} = \frac{Z_0 \left(\frac{1 + \Gamma_L e^{-j2\beta d}}{1 - \Gamma_L e^{-j2\beta d}} \right)}{Z_0 \left(\frac{1 + \Gamma_L e^{-j2\beta d}}{1 - \Gamma_L e^{-j2\beta d}} \right) + Z_{TH}} = \frac{Z_0 \left(1 + \Gamma_L e^{-j2\beta d} \right)}{Z_0 \left(1 + \Gamma_L e^{-j2\beta d} \right) + Z_{TH} \left(1 - \Gamma_L e^{-j2\beta d} \right)}$$

$$= \frac{Z_0 \left(1 + \Gamma_L e^{-j2\beta d} \right)}{(Z_{TH} + Z_0) + \Gamma_L e^{-j2\beta d} \left(Z_0 - Z_{TH} \right)}$$

$$= \left(\frac{Z_0}{Z_{TH} + Z_0} \right) \frac{\left(1 + \Gamma_L e^{-j2\beta d} \right)}{1 + \Gamma_L e^{-j2\beta d} \left(\frac{Z_0 - Z_{TH}}{Z_{TH} + Z_0} \right)}$$

$$= \left(\frac{Z_0}{Z_{TH} + Z_0} \right) \frac{\left(1 + \Gamma_L e^{-j2\beta d} \right)}{1 - \Gamma_L e^{-j2\beta d} \left(\frac{Z_{TH} - Z_0}{Z_{TH} + Z_0} \right)}$$

Hence, we have

$$\frac{Z_{in}}{Z_{in} + Z_{TH}} = \left(\frac{Z_0}{Z_0 + Z_{TH}}\right) \left(\frac{1 + \Gamma_L e^{-j2\beta d}}{1 - \Gamma_S \Gamma_L e^{-j2\beta d}}\right)$$

where
$$\Gamma_s = \frac{Z_{TH} - Z_0}{Z_{TH} + Z_0}$$

Therefore, we have the following alternative form for the result:

$$V(-\ell) = V_{TH}\left(\frac{Z_0}{Z_0 + Z_{TH}}\right)e^{-j\beta(d-\ell)}\left(\frac{1+\Gamma_L e^{-j2\beta\ell}}{1-\Gamma_S \Gamma_L e^{-j2\beta d}}\right)$$

$$V(-\ell) = V_{TH} \left(\frac{Z_0}{Z_0 + Z_{TH}}\right) e^{-j\beta(d-\ell)} \left(\frac{1 + \Gamma_L e^{-j2\beta\ell}}{1 - \Gamma_S \Gamma_L e^{-j2\beta d}}\right)$$

Voltage wave that would exist if there were no reflections ($\Gamma_{\rm L}$ =0)from the load (a semi-infinite transmission line or a matched load).

Given a 50 Ω transmission line that is 0.25 λ long excited by a 1Voltage source at 300MHz Frequency with an internal impedance of 100 Ω , and the line is terminated by a load ZI=100-j40 Ω determine v(I=- $\lambda/8$)

$$V(z = -\ell) = V_{TH}\left(\frac{Z_0}{Z_0 + Z_{TH}}\right)e^{-j\beta(d-\ell)}\left(\frac{1 + \Gamma_L e^{-j2\beta\ell}}{1 - \Gamma_S \Gamma_L e^{-j2\beta d}}\right)$$

$$\Gamma_L = \frac{Z_L - Z_o}{Z_L + Z_o} = 0.378 - j0.166$$

$$\Gamma_s = \frac{100 - 50}{100 + 50}$$

$$V\left(l=\frac{\lambda}{8}\right) = 1 * \left(\frac{50}{150}\right) * \left(e^{-j45}\right) \left(\frac{1+(0.378-j0.166)e^{-\frac{j\pi}{2}}}{1-\frac{1}{3}(0.378-j0.166)e^{-j\pi}}\right)$$

= 0.108 – j 0.248

Simulate Example 6 by ADS

	•			•	·		·			•	•	•		•				·	·	·	·	·	·		•	·			·	•	•	۰.	•	·	·
																										- 🚸	-^	\sim	~). -		1	
																											R				С		- T	=	
																											R2				C1				
																											R=	=10	0,0	hm	C=	13.	26	рF	
									v1				_			_																			
				4	~^	∿			<u>v i</u>	1			┢		<u>vz</u>	 L						+													
					R						TLI	N				TL	IN																		
					R1						ŤĽ	1				TĹ	2					Ż1	P_I	Eqn	Ľ.								·	·	·
•				•	R±1	00	Ohi	m	•		Ż=(50.0) Oł	im		Z=	50.0	0 Ół	nm		•	Z1	P1	•					•	•			•	·	•
÷.	Ł	V_/	(C								E=4	45	•			E≠	45					Z[1,1]	=10)0-j	*40				·			•	•	•
1	Ц	SR	C11								F=(0.3	GH:	Z		F=	0.3	GH	Z											·			•	•	•
୍ (୯	V)	Vac	=po	olar(1,0)	V	•				•																			·			·	•	
	Γ	Fre	q=.3	3 GH	Ηz																									·					
. –	Ł							- []	Ð,	· A	ι'n.																								
	٦.							6	10	. 1	i C																								
	Ξ								AC																					=					
									AC	:1																									
									Sta	art=	0.3	ĢΗ	z																						
									Sto	op=	0.3	GH	z																						
									Ste	∋p=	0.1	ĠH	Ż																						
•	•																														•	•	•		•

inputvoltage

freq	v1	√2	
300.0 MHz	0.181 + j0.058	0.108 - j0.248	\mathcal{A}

Special case for incident voltage when Z_{TH} =Zo

 $Z_{TH} = V_q$

A generator is connected to a transmission line as shown in the accompanying figure. Find the voltage as a function of z along the transmission line. Plot the magnitude of this voltage for $-\ell \le z \le 0$.

$$l_{max} at - 104 - 2\beta l_{max} = 0$$

 $l_{max} = 0.355\lambda$ and $V_{max} = 5(1.24) = 6.2 V$

 $l_{min} at - 104 - 2\beta l_{min} = \pi$ $l_{min} = 0.1055\lambda \text{ and } V_{min} = 5(1 - 0.24) = 3.8 \text{ V} \qquad l_{max} - l_{min} = \lambda / 4$

$$V_L = 10 * \frac{Z_L}{Z_{L+}Z_s} = 4.86 \left[-13.5^o\right]$$

Voltage Standing Wave Ratio

Voltage Standing Wave Ratio (VSWR) = $\frac{V_{\text{max}}}{V_{\text{min}}}$

$$\mathsf{VSWR} = \frac{1 + \left| \Gamma_L \right|}{1 - \left| \Gamma_L \right|}$$